An Improved Tight Closure Algorithm for Integer Octagonal Constraints

نویسندگان

  • Roberto Bagnara
  • Patricia M. Hill
  • Enea Zaffanella
چکیده

Integer octagonal constraints (a.k.a. Unit Two Variables Per Inequality or UTVPI integer constraints) constitute an interesting class of constraints for the representation and solution of integer problems in the fields of constraint programming and formal analysis and verification of software and hardware systems, since they couple algorithms having polynomial complexity with a relatively good expressive power. The main algorithms required for the manipulation of such constraints are the satisfiability check and the computation of the inferential closure of a set of constraints. The latter is called tight closure to mark the difference with the (incomplete) closure algorithm that does not exploit the integrality of the variables. In this paper we present and fully justify an O(n ) algorithm to compute the tight closure of a set of UTVPI integer constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tightened Transitive Closure of Integer Addition Constraints

We present algorithms for testing the satisfiability and finding the tightened transitive closure of conjunctions of addition constraints of the form ±x ± y ≤ d and bound constraints of the form ±x ≤ d where x and y are integer variables and d is an integer constrant. The running time of these algorithms is a cubic polynomial in the number of input constraints. We also describe an efficient mat...

متن کامل

PTIME Computation of Transitive Closures of Octagonal Relations

Computing transitive closures of integer relations is the key to finding precise invariants of integer programs. In this paper, we study difference bounds and octagonal relations and prove that their transitive closure is a PTIMEcomputable formula in the existential fragment of Presburger arithmetic. This result marks a significant complexity improvement, as the known algorithms have EXPTIME wo...

متن کامل

Incrementally Closing Octagons

Abstract The octagon abstract domain is a widely used numeric abstract domain expressing relational information between variables whilst being both computationally efficient and simple to implement. Each element of the domain is a system of constraints where each constraint takes the restricted form ̆xi ̆xj ď c. A key family of operations for the octagon domain are closure algorithms, which check...

متن کامل

Weakly-relational shapes for numeric abstractions: improved algorithms and proofs of correctness

Weakly-relational numeric constraints provide a compromise between complexity and expressivity that is adequate for several applications in the field of formal analysis and verification of software and hardware systems. We address the problems to be solved for the construction of full-fledged, efficient and provably correct abstract domains based on such constraints. We first propose to work wi...

متن کامل

Iterating Octagons

In this paper we prove that the transitive closure of a nondeterministic octagonal relation using integer counters can be expressed in Presburger arithmetic. The direct consequence of this fact is that the reachability problem is decidable for flat counter automata with octagonal transition relations. This result improves the previous results of Comon and Jurski [7] and Bozga, Iosif and Lakhnec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008